Curve name | $X_{192b}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 9 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 15 & 14 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 14 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{192}$ | ||||||||||||
Curves that $X_{192b}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{192b}$ | |||||||||||||
Curves that minimally cover $X_{192b}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{26} - 216t^{25} - 25488t^{24} - 201312t^{23} - 719712t^{22} - 3328128t^{21} - 5412096t^{20} + 9580032t^{19} - 8729856t^{18} + 79958016t^{17} + 64806912t^{16} + 4866048t^{15} + 421576704t^{14} - 19464192t^{13} + 1036910592t^{12} - 5117313024t^{11} - 2234843136t^{10} - 9809952768t^{9} - 22167945216t^{8} + 54528049152t^{7} - 47167045632t^{6} + 52772732928t^{5} - 26726105088t^{4} + 905969664t^{3} - 452984832t^{2}\] \[B(t) = 54t^{39} + 648t^{38} - 108864t^{37} - 1331424t^{36} - 15310944t^{35} - 132212736t^{34} - 525256704t^{33} - 1266057216t^{32} - 3700131840t^{31} - 4078854144t^{30} + 5130584064t^{29} + 35186835456t^{28} + 239444066304t^{27} + 63616057344t^{26} + 284488630272t^{25} - 747594842112t^{24} - 5970290540544t^{23} + 3552222117888t^{22} + 14208888471552t^{20} + 95524648648704t^{19} - 47846069895168t^{18} - 72829089349632t^{17} + 65142842720256t^{16} - 980762895581184t^{15} + 576501112111104t^{14} - 336237957218304t^{13} - 1069247140724736t^{12} + 3879869444259840t^{11} - 5310228845297664t^{10} + 8812345178456064t^{9} - 8872646519291904t^{8} + 4110000234430464t^{7} - 1429605634277376t^{6} + 467567319711744t^{5} + 11132555231232t^{4} - 3710851743744t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 - 3001250x - 2002500000$, with conductor $1050$ | ||||||||||||
Generic density of odd order reductions | $1091/10752$ |