Curve name | $X_{192c}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 9 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 15 & 14 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 14 \\ 0 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{192}$ | ||||||||||||
Curves that $X_{192c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{192c}$ | |||||||||||||
Curves that minimally cover $X_{192c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{26} - 864t^{25} - 101952t^{24} - 805248t^{23} - 2878848t^{22} - 13312512t^{21} - 21648384t^{20} + 38320128t^{19} - 34919424t^{18} + 319832064t^{17} + 259227648t^{16} + 19464192t^{15} + 1686306816t^{14} - 77856768t^{13} + 4147642368t^{12} - 20469252096t^{11} - 8939372544t^{10} - 39239811072t^{9} - 88671780864t^{8} + 218112196608t^{7} - 188668182528t^{6} + 211090931712t^{5} - 106904420352t^{4} + 3623878656t^{3} - 1811939328t^{2}\] \[B(t) = 432t^{39} + 5184t^{38} - 870912t^{37} - 10651392t^{36} - 122487552t^{35} - 1057701888t^{34} - 4202053632t^{33} - 10128457728t^{32} - 29601054720t^{31} - 32630833152t^{30} + 41044672512t^{29} + 281494683648t^{28} + 1915552530432t^{27} + 508928458752t^{26} + 2275909042176t^{25} - 5980758736896t^{24} - 47762324324352t^{23} + 28417776943104t^{22} + 113671107772416t^{20} + 764197189189632t^{19} - 382768559161344t^{18} - 582632714797056t^{17} + 521142741762048t^{16} - 7846103164649472t^{15} + 4612008896888832t^{14} - 2689903657746432t^{13} - 8553977125797888t^{12} + 31038955554078720t^{11} - 42481830762381312t^{10} + 70498761427648512t^{9} - 70981172154335232t^{8} + 32880001875443712t^{7} - 11436845074219008t^{6} + 3740538557693952t^{5} + 89060441849856t^{4} - 29686813949952t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 - 27011255x + 54040488747$, with conductor $3150$ | ||||||||||||
Generic density of odd order reductions | $11/112$ |