Curve name | $X_{192f}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 9 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 9 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 14 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 14 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{192}$ | ||||||||||||
Curves that $X_{192f}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{192f}$ | |||||||||||||
Curves that minimally cover $X_{192f}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{30} - 23544t^{28} + 1059696t^{26} - 5315328t^{24} - 279085824t^{22} + 4004149248t^{20} - 24796827648t^{18} + 106709778432t^{16} - 396749242368t^{14} + 1025062207488t^{12} - 1143135535104t^{10} - 348345335808t^{8} + 1111171792896t^{6} - 395002773504t^{4} - 7247757312t^{2}\] \[B(t) = 54t^{45} - 115992t^{43} - 471744t^{41} + 527641344t^{39} - 21426467328t^{37} + 347735918592t^{35} - 2757111644160t^{33} + 18883543302144t^{31} - 223568674947072t^{29} + 2333052597436416t^{27} - 15123131224031232t^{25} + 60492524896124928t^{23} - 149315366235930624t^{21} + 228934323145801728t^{19} - 309387973462327296t^{17} + 722760274846679040t^{15} - 1458510154294099968t^{13} + 1437905881915195392t^{11} - 566550579124371456t^{9} + 8104500208336896t^{7} + 31883638182248448t^{5} - 237494511599616t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 52942059x - 148255335887$, with conductor $4410$ | ||||||||||||
Generic density of odd order reductions | $271/2688$ |