Curve name | $X_{192h}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 9 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 14 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 9 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{192}$ | ||||||||||||
Curves that $X_{192h}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{192h}$ | |||||||||||||
Curves that minimally cover $X_{192h}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{24} - 23760t^{22} + 870048t^{20} + 2025216t^{18} - 276804864t^{16} + 1757306880t^{14} - 6309494784t^{12} + 28116910080t^{10} - 70862045184t^{8} + 8295284736t^{6} + 57019465728t^{4} - 24914165760t^{2} - 452984832\] \[B(t) = 54t^{36} - 115344t^{34} - 1858464t^{32} + 510879744t^{30} - 15214086144t^{28} + 140525715456t^{26} - 307830620160t^{24} + 7470640005120t^{22} - 110151479328768t^{20} + 632942965555200t^{18} - 1762423669260288t^{16} + 1912483841310720t^{14} - 1260874220175360t^{12} + 9209493288124416t^{10} - 15953125592530944t^{8} + 8571139815112704t^{6} - 498877631299584t^{4} - 495398707789824t^{2} + 3710851743744\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + x^2 - 5882451x + 5488977549$, with conductor $1470$ | ||||||||||||
Generic density of odd order reductions | $11/112$ |