Curve name | $X_{192m}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 9 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 9 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 14 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{192}$ | ||||||||||||
Curves that $X_{192m}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{192m}$ | |||||||||||||
Curves that minimally cover $X_{192m}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{24} - 95040t^{22} + 3480192t^{20} + 8100864t^{18} - 1107219456t^{16} + 7029227520t^{14} - 25237979136t^{12} + 112467640320t^{10} - 283448180736t^{8} + 33181138944t^{6} + 228077862912t^{4} - 99656663040t^{2} - 1811939328\] \[B(t) = 432t^{36} - 922752t^{34} - 14867712t^{32} + 4087037952t^{30} - 121712689152t^{28} + 1124205723648t^{26} - 2462644961280t^{24} + 59765120040960t^{22} - 881211834630144t^{20} + 5063543724441600t^{18} - 14099389354082304t^{16} + 15299870730485760t^{14} - 10086993761402880t^{12} + 73675946304995328t^{10} - 127625004740247552t^{8} + 68569118520901632t^{6} - 3991021050396672t^{4} - 3963189662318592t^{2} + 29686813949952\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 376476865x + 2811485935775$, with conductor $47040$ | ||||||||||||
Generic density of odd order reductions | $271/2688$ |