Curve name | $X_{192n}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 6 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{192}$ | |||||||||
Curves that $X_{192n}$ minimally covers | ||||||||||
Curves that minimally cover $X_{192n}$ | ||||||||||
Curves that minimally cover $X_{192n}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} - 100224t^{14} - 1264896t^{12} + 8239104t^{10} - 19630080t^{8} + 131825664t^{6} - 323813376t^{4} - 410517504t^{2} - 7077888\] \[B(t) = 432t^{24} - 891648t^{22} - 79833600t^{20} - 70447104t^{18} + 606818304t^{16} + 30799429632t^{14} - 206851276800t^{12} + 492790874112t^{10} + 155345485824t^{8} - 288551337984t^{6} - 5231974809600t^{4} - 934960693248t^{2} + 7247757312\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 7683201x - 8194556799$, with conductor $6720$ | |||||||||
Generic density of odd order reductions | $299/2688$ |