Curve name | $X_{195a}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 14 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 8 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{195}$ | ||||||||||||
Curves that $X_{195a}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{195a}$ | |||||||||||||
Curves that minimally cover $X_{195a}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -442368t^{24} + 6414336t^{20} - 414720t^{16} - 1022976t^{12} - 25920t^{8} + 25056t^{4} - 108\] \[B(t) = 113246208t^{36} + 3652190208t^{32} - 4671406080t^{28} - 1734082560t^{24} + 554729472t^{20} + 138682368t^{16} - 27095040t^{12} - 4561920t^{8} + 222912t^{4} + 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + 55967x - 2732063$, with conductor $4800$ | ||||||||||||
Generic density of odd order reductions | $109/896$ |