Curve name | $X_{195b}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 14 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 8 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{195}$ | ||||||||||||
Curves that $X_{195b}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{195b}$ | |||||||||||||
Curves that minimally cover $X_{195b}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -110592t^{24} + 1603584t^{20} - 103680t^{16} - 255744t^{12} - 6480t^{8} + 6264t^{4} - 27\] \[B(t) = -14155776t^{36} - 456523776t^{32} + 583925760t^{28} + 216760320t^{24} - 69341184t^{20} - 17335296t^{16} + 3386880t^{12} + 570240t^{8} - 27864t^{4} - 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + 13992x + 334512$, with conductor $1200$ | ||||||||||||
Generic density of odd order reductions | $5/42$ |