Curve name | $X_{195c}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 14 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 8 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{195}$ | ||||||||||||
Curves that $X_{195c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{195c}$ | |||||||||||||
Curves that minimally cover $X_{195c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1769472t^{32} + 26542080t^{28} - 14598144t^{24} - 1658880t^{20} + 1838592t^{16} - 103680t^{12} - 57024t^{8} + 6480t^{4} - 27\] \[B(t) = 905969664t^{48} + 28538044416t^{44} - 59114520576t^{40} + 19619905536t^{36} + 7378698240t^{32} - 4236115968t^{28} + 264757248t^{20} - 28823040t^{16} - 4790016t^{12} + 902016t^{8} - 27216t^{4} - 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 + 7870x + 141122$, with conductor $225$ | ||||||||||||
Generic density of odd order reductions | $299/2688$ |