Curve name | $X_{195d}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 14 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 8 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{195}$ | ||||||||||||
Curves that $X_{195d}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{195d}$ | |||||||||||||
Curves that minimally cover $X_{195d}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -7077888t^{32} + 106168320t^{28} - 58392576t^{24} - 6635520t^{20} + 7354368t^{16} - 414720t^{12} - 228096t^{8} + 25920t^{4} - 108\] \[B(t) = 7247757312t^{48} + 228304355328t^{44} - 472916164608t^{40} + 156959244288t^{36} + 59029585920t^{32} - 33888927744t^{28} + 2118057984t^{20} - 230584320t^{16} - 38320128t^{12} + 7216128t^{8} - 217728t^{4} - 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 503700x + 73262000$, with conductor $14400$ | ||||||||||||
Generic density of odd order reductions | $51/448$ |