Curve name | $X_{195g}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 7 \\ 0 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{195}$ | |||||||||
Curves that $X_{195g}$ minimally covers | ||||||||||
Curves that minimally cover $X_{195g}$ | ||||||||||
Curves that minimally cover $X_{195g}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27648t^{16} + 414720t^{12} - 231552t^{8} + 25920t^{4} - 108\] \[B(t) = 1769472t^{24} + 55738368t^{20} - 115126272t^{16} + 48771072t^{12} - 7195392t^{8} + 217728t^{4} + 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 + 2239x - 20961$, with conductor $960$ | |||||||||
Generic density of odd order reductions | $299/2688$ |