Curve name | $X_{195i}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 6 \\ 0 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{195}$ | |||||||||
Curves that $X_{195i}$ minimally covers | ||||||||||
Curves that minimally cover $X_{195i}$ | ||||||||||
Curves that minimally cover $X_{195i}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -110592t^{24} + 1714176t^{20} - 1762560t^{16} + 670464t^{12} - 110160t^{8} + 6696t^{4} - 27\] \[B(t) = 14155776t^{36} + 435290112t^{32} - 1252786176t^{28} + 1164312576t^{24} - 529846272t^{20} + 132461568t^{16} - 18192384t^{12} + 1223424t^{8} - 26568t^{4} - 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 315x + 1066$, with conductor $45$ | |||||||||
Generic density of odd order reductions | $299/2688$ |