Curve name | $X_{197b}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{197}$ | ||||||||||||
Curves that $X_{197b}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{197b}$ | |||||||||||||
Curves that minimally cover $X_{197b}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = 45684t^{24} - 1591488t^{23} - 18591552t^{22} - 72997632t^{21} - 227187072t^{20} - 690398208t^{19} - 3708232704t^{18} - 12310548480t^{17} - 18470384640t^{16} - 22398861312t^{15} + 104746549248t^{14} + 80245555200t^{13} + 1148205072384t^{12} - 320982220800t^{11} + 1675944787968t^{10} + 1433527123968t^{9} - 4728418467840t^{8} + 12606001643520t^{7} - 15188921155584t^{6} + 11311484239872t^{5} - 14888931950592t^{4} + 19135891243008t^{3} - 19494655229952t^{2} + 6675184484352t + 766450335744\] \[B(t) = -27515376t^{36} - 437913216t^{35} - 1898494848t^{34} - 12171216384t^{33} - 154282952448t^{32} - 1181314990080t^{31} - 5686781755392t^{30} - 16898445213696t^{29} - 34579768983552t^{28} - 53143377149952t^{27} - 50195712835584t^{26} - 200541976657920t^{25} - 751461386158080t^{24} - 7040564880998400t^{23} - 20068358820986880t^{22} - 59571855421341696t^{21} - 96668090797916160t^{20} - 133704509187686400t^{19} - 230698477556858880t^{18} + 534818036750745600t^{17} - 1546689452766658560t^{16} + 3812598746965868544t^{15} - 5137499858172641280t^{14} + 7209538438142361600t^{13} - 3077985837703495680t^{12} + 3285679745563361280t^{11} - 3289626236392833024t^{10} + 13931217459597017088t^{9} - 36259515841697021952t^{8} + 70877216353585987584t^{7} - 95408365855070748672t^{6} + 79276707010440069120t^{5} - 41415014693405196288t^{4} + 13068744080454844416t^{3} - 8153973283784491008t^{2} + 7523291764824735744t - 1890842240914292736\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 564x - 37744$, with conductor $576$ | ||||||||||||
Generic density of odd order reductions | $109/896$ |