Curve name | X197c | ||||||||||||
Index | 96 | ||||||||||||
Level | 16 | ||||||||||||
Genus | 0 | ||||||||||||
Does the subgroup contain −I? | No | ||||||||||||
Generating matrices | [3081],[7087],[5501] | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | X197 | ||||||||||||
Curves that X197c minimally covers | |||||||||||||
Curves that minimally cover X197c | |||||||||||||
Curves that minimally cover X197c and have infinitely many rational points. | |||||||||||||
Model | P1, a universal elliptic curve over an appropriate base is given by y2=x3+A(t)x+B(t), where A(t)=11421t24−397872t23−4647888t22−18249408t21−56796768t20−172599552t19−927058176t18−3077637120t17−4617596160t16−5599715328t15+26186637312t14+20061388800t13+287051268096t12−80245555200t11+418986196992t10+358381780992t9−1182104616960t8+3151500410880t7−3797230288896t6+2827871059968t5−3722232987648t4+4783972810752t3−4873663807488t2+1668796121088t+191612583936 B(t)=−3439422t36−54739152t35−237311856t34−1521402048t33−19285369056t32−147664373760t31−710847719424t30−2112305651712t29−4322471122944t28−6642922143744t27−6274464104448t26−25067747082240t25−93932673269760t24−880070610124800t23−2508544852623360t22−7446481927667712t21−12083511349739520t20−16713063648460800t19−28837309694607360t18+66852254593843200t17−193336181595832320t16+476574843370733568t15−642187482271580160t14+901192304767795200t13−384748229712936960t12+410709968195420160t11−411203279549104128t10+1741402182449627136t9−4532439480212127744t8+8859652044198248448t7−11926045731883843584t6+9909588376305008640t5−5176876836675649536t4+1633593010056855552t3−1019246660473061376t2+940411470603091968t−236355280114286592 | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose 2-adic image is the subgroup | y2=x3+141x−4718, with conductor 144 | ||||||||||||
Generic density of odd order reductions | 299/2688 |