Curve name | $X_{199b}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{199}$ | ||||||||||||
Curves that $X_{199b}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{199b}$ | |||||||||||||
Curves that minimally cover $X_{199b}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{24} + 11880t^{22} + 217512t^{20} - 253152t^{18} - 17300304t^{16} - 54915840t^{14} - 98585856t^{12} - 219663360t^{10} - 276804864t^{8} - 16201728t^{6} + 55683072t^{4} + 12165120t^{2} - 110592\] \[B(t) = 54t^{36} + 57672t^{34} - 464616t^{32} - 63859968t^{30} - 950880384t^{28} - 4391428608t^{26} - 4809853440t^{24} - 58364375040t^{22} - 430279216128t^{20} - 1236216729600t^{18} - 1721116864512t^{16} - 933830000640t^{14} - 307830620160t^{12} - 1124205723648t^{10} - 973701513216t^{8} - 261570428928t^{6} - 7612268544t^{4} + 3779592192t^{2} + 14155776\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + x^2 - 475122x - 151542927$, with conductor $1734$ | ||||||||||||
Generic density of odd order reductions | $299/2688$ |