Curve name | $X_{199c}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{199}$ | ||||||||||||
Curves that $X_{199c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{199c}$ | |||||||||||||
Curves that minimally cover $X_{199c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{24} + 47520t^{22} + 870048t^{20} - 1012608t^{18} - 69201216t^{16} - 219663360t^{14} - 394343424t^{12} - 878653440t^{10} - 1107219456t^{8} - 64806912t^{6} + 222732288t^{4} + 48660480t^{2} - 442368\] \[B(t) = 432t^{36} + 461376t^{34} - 3716928t^{32} - 510879744t^{30} - 7607043072t^{28} - 35131428864t^{26} - 38478827520t^{24} - 466915000320t^{22} - 3442233729024t^{20} - 9889733836800t^{18} - 13768934916096t^{16} - 7470640005120t^{14} - 2462644961280t^{12} - 8993645789184t^{10} - 7789612105728t^{8} - 2092563431424t^{6} - 60898148352t^{4} + 30236737536t^{2} + 113246208\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 30407809x - 77498755105$, with conductor $55488$ | ||||||||||||
Generic density of odd order reductions | $109/896$ |