Curve name | $X_{199e}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 0 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{199}$ | |||||||||
Curves that $X_{199e}$ minimally covers | ||||||||||
Curves that minimally cover $X_{199e}$ | ||||||||||
Curves that minimally cover $X_{199e}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} + 12528t^{14} - 79056t^{12} - 257472t^{10} - 306720t^{8} - 1029888t^{6} - 1264896t^{4} + 801792t^{2} - 6912\] \[B(t) = -54t^{24} - 55728t^{22} + 2494800t^{20} - 1100736t^{18} - 4740768t^{16} + 120310272t^{14} + 404006400t^{12} + 481241088t^{10} - 75852288t^{8} - 70447104t^{6} + 638668800t^{4} - 57065472t^{2} - 221184\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 26304x + 1980288$, with conductor $816$ | |||||||||
Generic density of odd order reductions | $215/2688$ |