Curve name | $X_{199h}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 5 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{199}$ | |||||||||
Curves that $X_{199h}$ minimally covers | ||||||||||
Curves that minimally cover $X_{199h}$ | ||||||||||
Curves that minimally cover $X_{199h}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} + 50112t^{14} - 316224t^{12} - 1029888t^{10} - 1226880t^{8} - 4119552t^{6} - 5059584t^{4} + 3207168t^{2} - 27648\] \[B(t) = 432t^{24} + 445824t^{22} - 19958400t^{20} + 8805888t^{18} + 37926144t^{16} - 962482176t^{14} - 3232051200t^{12} - 3849928704t^{10} + 606818304t^{8} + 563576832t^{6} - 5109350400t^{4} + 456523776t^{2} + 1769472\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 105217x - 15737087$, with conductor $3264$ | |||||||||
Generic density of odd order reductions | $109/896$ |