Curve name | $X_{200g}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{200}$ | |||||||||
Curves that $X_{200g}$ minimally covers | ||||||||||
Curves that minimally cover $X_{200g}$ | ||||||||||
Curves that minimally cover $X_{200g}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -442368t^{24} + 4423680t^{22} - 42688512t^{20} + 237330432t^{18} - 629462016t^{16} + 832204800t^{14} - 600044544t^{12} + 208051200t^{10} - 39341376t^{8} + 3708288t^{6} - 166752t^{4} + 4320t^{2} - 108\] \[B(t) = -113246208t^{36} + 1698693120t^{34} + 3822059520t^{32} - 151976411136t^{30} + 1011826556928t^{28} - 3649896972288t^{26} + 8480605077504t^{24} - 12985617088512t^{22} + 12688948297728t^{20} - 7860634288128t^{18} + 3172237074432t^{16} - 811601068032t^{14} + 132509454336t^{12} - 14257410048t^{10} + 988111872t^{8} - 37103616t^{6} + 233280t^{4} + 25920t^{2} - 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 326209x + 25271231$, with conductor $9408$ | |||||||||
Generic density of odd order reductions | $271/2688$ |