Curve name | $X_{200h}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{200}$ | |||||||||
Curves that $X_{200h}$ minimally covers | ||||||||||
Curves that minimally cover $X_{200h}$ | ||||||||||
Curves that minimally cover $X_{200h}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -442368t^{24} + 4423680t^{22} - 42688512t^{20} + 237330432t^{18} - 629462016t^{16} + 832204800t^{14} - 600044544t^{12} + 208051200t^{10} - 39341376t^{8} + 3708288t^{6} - 166752t^{4} + 4320t^{2} - 108\] \[B(t) = 113246208t^{36} - 1698693120t^{34} - 3822059520t^{32} + 151976411136t^{30} - 1011826556928t^{28} + 3649896972288t^{26} - 8480605077504t^{24} + 12985617088512t^{22} - 12688948297728t^{20} + 7860634288128t^{18} - 3172237074432t^{16} + 811601068032t^{14} - 132509454336t^{12} + 14257410048t^{10} - 988111872t^{8} + 37103616t^{6} - 233280t^{4} - 25920t^{2} + 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 326209x - 25271231$, with conductor $9408$ | |||||||||
Generic density of odd order reductions | $109/896$ |