Curve name | $X_{202a}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{202}$ | ||||||||||||
Curves that $X_{202a}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{202a}$ | |||||||||||||
Curves that minimally cover $X_{202a}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -442368t^{24} - 48660480t^{22} + 222732288t^{20} + 64806912t^{18} - 1107219456t^{16} + 878653440t^{14} - 394343424t^{12} + 219663360t^{10} - 69201216t^{8} + 1012608t^{6} + 870048t^{4} - 47520t^{2} - 108\] \[B(t) = 113246208t^{36} - 30236737536t^{34} - 60898148352t^{32} + 2092563431424t^{30} - 7789612105728t^{28} + 8993645789184t^{26} - 2462644961280t^{24} + 7470640005120t^{22} - 13768934916096t^{20} + 9889733836800t^{18} - 3442233729024t^{16} + 466915000320t^{14} - 38478827520t^{12} + 35131428864t^{10} - 7607043072t^{8} + 510879744t^{6} - 3716928t^{4} - 461376t^{2} + 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 2866369x + 1850890945$, with conductor $9408$ | ||||||||||||
Generic density of odd order reductions | $109/896$ |