Curve name | $X_{202b}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{202}$ | ||||||||||||
Curves that $X_{202b}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{202b}$ | |||||||||||||
Curves that minimally cover $X_{202b}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -442368t^{24} - 48660480t^{22} + 222732288t^{20} + 64806912t^{18} - 1107219456t^{16} + 878653440t^{14} - 394343424t^{12} + 219663360t^{10} - 69201216t^{8} + 1012608t^{6} + 870048t^{4} - 47520t^{2} - 108\] \[B(t) = -113246208t^{36} + 30236737536t^{34} + 60898148352t^{32} - 2092563431424t^{30} + 7789612105728t^{28} - 8993645789184t^{26} + 2462644961280t^{24} - 7470640005120t^{22} + 13768934916096t^{20} - 9889733836800t^{18} + 3442233729024t^{16} - 466915000320t^{14} + 38478827520t^{12} - 35131428864t^{10} + 7607043072t^{8} - 510879744t^{6} + 3716928t^{4} + 461376t^{2} - 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 2866369x - 1850890945$, with conductor $9408$ | ||||||||||||
Generic density of odd order reductions | $271/2688$ |