Curve name | $X_{202d}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{202}$ | ||||||||||||
Curves that $X_{202d}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{202d}$ | |||||||||||||
Curves that minimally cover $X_{202d}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -110592t^{24} - 12165120t^{22} + 55683072t^{20} + 16201728t^{18} - 276804864t^{16} + 219663360t^{14} - 98585856t^{12} + 54915840t^{10} - 17300304t^{8} + 253152t^{6} + 217512t^{4} - 11880t^{2} - 27\] \[B(t) = -14155776t^{36} + 3779592192t^{34} + 7612268544t^{32} - 261570428928t^{30} + 973701513216t^{28} - 1124205723648t^{26} + 307830620160t^{24} - 933830000640t^{22} + 1721116864512t^{20} - 1236216729600t^{18} + 430279216128t^{16} - 58364375040t^{14} + 4809853440t^{12} - 4391428608t^{10} + 950880384t^{8} - 63859968t^{6} + 464616t^{4} + 57672t^{2} - 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 716592x - 231003072$, with conductor $2352$ | ||||||||||||
Generic density of odd order reductions | $299/2688$ |