The modular curve $X_{202e}$

Curve name $X_{202e}$
Index $96$
Level $8$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 5 & 5 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 7 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $12$ $X_{13h}$
Meaning/Special name
Chosen covering $X_{202}$
Curves that $X_{202e}$ minimally covers
Curves that minimally cover $X_{202e}$
Curves that minimally cover $X_{202e}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27648t^{16} - 3207168t^{14} - 5059584t^{12} + 4119552t^{10} - 1226880t^{8} + 1029888t^{6} - 316224t^{4} - 50112t^{2} - 108\] \[B(t) = -1769472t^{24} + 456523776t^{22} + 5109350400t^{20} + 563576832t^{18} - 606818304t^{16} - 3849928704t^{14} + 3232051200t^{12} - 962482176t^{10} - 37926144t^{8} + 8805888t^{6} + 19958400t^{4} + 445824t^{2} - 432\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 - x^2 - 58497x + 5412897$, with conductor $1344$
Generic density of odd order reductions $271/2688$

Back to the 2-adic image homepage.