Curve name | $X_{202h}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{202}$ | |||||||||
Curves that $X_{202h}$ minimally covers | ||||||||||
Curves that minimally cover $X_{202h}$ | ||||||||||
Curves that minimally cover $X_{202h}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -6912t^{16} - 801792t^{14} - 1264896t^{12} + 1029888t^{10} - 306720t^{8} + 257472t^{6} - 79056t^{4} - 12528t^{2} - 27\] \[B(t) = -221184t^{24} + 57065472t^{22} + 638668800t^{20} + 70447104t^{18} - 75852288t^{16} - 481241088t^{14} + 404006400t^{12} - 120310272t^{10} - 4740768t^{8} + 1100736t^{6} + 2494800t^{4} + 55728t^{2} - 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 14624x + 669300$, with conductor $336$ | |||||||||
Generic density of odd order reductions | $53/896$ |