Curve name | $X_{204g}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{204}$ | |||||||||
Curves that $X_{204g}$ minimally covers | ||||||||||
Curves that minimally cover $X_{204g}$ | ||||||||||
Curves that minimally cover $X_{204g}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -70956t^{24} - 1280448t^{23} - 12578112t^{22} - 75071232t^{21} - 337087872t^{20} - 1100141568t^{19} - 2935194624t^{18} - 5721477120t^{17} - 10318648320t^{16} - 15232499712t^{15} - 31467405312t^{14} - 21888368640t^{13} - 33873002496t^{12} + 87553474560t^{11} - 503478484992t^{10} + 974879981568t^{9} - 2641573969920t^{8} + 5858792570880t^{7} - 12022557179904t^{6} + 18024719450112t^{5} - 22091390779392t^{4} + 19679473041408t^{3} - 13189106368512t^{2} + 5370588168192t - 1190444138496\] \[B(t) = -6940080t^{36} - 202766976t^{35} - 2799888768t^{34} - 26266056192t^{33} - 180833575680t^{32} - 970623959040t^{31} - 4155648786432t^{30} - 14694773096448t^{29} - 43586085961728t^{28} - 112372304707584t^{27} - 249245897195520t^{26} - 493863131676672t^{25} - 828976065675264t^{24} - 1422508381175808t^{23} - 2191642652049408t^{22} - 4079057293541376t^{21} - 4644612423548928t^{20} - 4084939754569728t^{19} - 6302806944251904t^{18} + 16339759018278912t^{17} - 74313798776782848t^{16} + 261059666786648064t^{15} - 561060518924648448t^{14} + 1456648582324027392t^{13} - 3395485965005881344t^{12} + 8091453549390594048t^{11} - 16334579118605598720t^{10} + 29457725445264900096t^{9} - 45703323673404899328t^{8} + 61634345577524232192t^{7} - 69720217310107533312t^{6} + 65137471262356930560t^{5} - 48542143347771310080t^{4} + 28202963084884574208t^{3} - 12025430690997731328t^{2} + 3483510122515267584t - 476918666105978880\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 876x - 9520$, with conductor $576$ | |||||||||
Generic density of odd order reductions | $109/896$ |