Curve name | $X_{205a}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 9 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 8 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{205}$ | ||||||||||||
Curves that $X_{205a}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{205a}$ | |||||||||||||
Curves that minimally cover $X_{205a}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{32} + 6480t^{28} - 14256t^{24} - 6480t^{20} + 28728t^{16} - 6480t^{12} - 14256t^{8} + 6480t^{4} - 108\] \[B(t) = 432t^{48} + 54432t^{44} - 451008t^{40} + 598752t^{36} + 900720t^{32} - 2068416t^{28} + 2068416t^{20} - 900720t^{16} - 598752t^{12} + 451008t^{8} - 54432t^{4} - 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 - 658532625x - 105614604984375$, with conductor $252150$ | ||||||||||||
Generic density of odd order reductions | $51/448$ |