Curve name | $X_{205d}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 9 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 8 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{205}$ | ||||||||||||
Curves that $X_{205d}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{205d}$ | |||||||||||||
Curves that minimally cover $X_{205d}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{32} + 1620t^{28} - 3564t^{24} - 1620t^{20} + 7182t^{16} - 1620t^{12} - 3564t^{8} + 1620t^{4} - 27\] \[B(t) = 54t^{48} + 6804t^{44} - 56376t^{40} + 74844t^{36} + 112590t^{32} - 258552t^{28} + 258552t^{20} - 112590t^{16} - 74844t^{12} + 56376t^{8} - 6804t^{4} - 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 + 198975145x - 1681901699853$, with conductor $130050$ | ||||||||||||
Generic density of odd order reductions | $299/2688$ |