Curve name | $X_{206}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{84}$ | |||||||||
Curves that $X_{206}$ minimally covers | $X_{84}$, $X_{96}$, $X_{99}$ | |||||||||
Curves that minimally cover $X_{206}$ | $X_{442}$, $X_{460}$ | |||||||||
Curves that minimally cover $X_{206}$ and have infinitely many rational points. | ||||||||||
Model | A model was not computed. This curve is a conic with no rational points. | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | None | |||||||||
Generic density of odd order reductions | N/A |