Curve name | $X_{207c}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 0 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{207}$ | ||||||||||||
Curves that $X_{207c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{207c}$ | |||||||||||||
Curves that minimally cover $X_{207c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{22} - 4752t^{21} + 8208t^{20} + 2989440t^{19} + 62339328t^{18} + 638337024t^{17} + 3673755648t^{16} + 10080681984t^{15} - 12150079488t^{14} - 221109682176t^{13} - 894669815808t^{12} - 1768877457408t^{11} - 777605087232t^{10} + 5161309175808t^{9} + 15047703134208t^{8} + 20917027602432t^{7} + 16341880799232t^{6} + 6269310074880t^{5} + 137707388928t^{4} - 637802643456t^{3} - 115964116992t^{2}\] \[B(t) = 432t^{33} + 28512t^{32} + 1757376t^{31} + 71245440t^{30} + 1694836224t^{29} + 24404944896t^{28} + 205952827392t^{27} + 662685401088t^{26} - 6586979844096t^{25} - 110131636469760t^{24} - 813424020553728t^{23} - 3662208293142528t^{22} - 9354237853040640t^{21} - 1998858309599232t^{20} + 89587256867684352t^{19} + 381431083394138112t^{18} + 716698054941474816t^{17} - 127926931814350848t^{16} - 4789369780756807680t^{15} - 15000405168711794688t^{14} - 26654278305504559104t^{13} - 28870347710728765440t^{12} - 13813897954005614592t^{11} + 11118016114100011008t^{10} + 27642520567730405376t^{9} + 26204610047250530304t^{8} + 14558532308312260608t^{7} + 4895949356626083840t^{6} + 966127673187237888t^{5} + 125397102124597248t^{4} + 15199648742375424t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 731508x + 10909262576$, with conductor $20160$ | ||||||||||||
Generic density of odd order reductions | $11/112$ |