Curve name | $X_{207g}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 0 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{207}$ | ||||||||||||
Curves that $X_{207g}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{207g}$ | |||||||||||||
Curves that minimally cover $X_{207g}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{22} - 1188t^{21} + 2052t^{20} + 747360t^{19} + 15584832t^{18} + 159584256t^{17} + 918438912t^{16} + 2520170496t^{15} - 3037519872t^{14} - 55277420544t^{13} - 223667453952t^{12} - 442219364352t^{11} - 194401271808t^{10} + 1290327293952t^{9} + 3761925783552t^{8} + 5229256900608t^{7} + 4085470199808t^{6} + 1567327518720t^{5} + 34426847232t^{4} - 159450660864t^{3} - 28991029248t^{2}\] \[B(t) = 54t^{33} + 3564t^{32} + 219672t^{31} + 8905680t^{30} + 211854528t^{29} + 3050618112t^{28} + 25744103424t^{27} + 82835675136t^{26} - 823372480512t^{25} - 13766454558720t^{24} - 101678002569216t^{23} - 457776036642816t^{22} - 1169279731630080t^{21} - 249857288699904t^{20} + 11198407108460544t^{19} + 47678885424267264t^{18} + 89587256867684352t^{17} - 15990866476793856t^{16} - 598671222594600960t^{15} - 1875050646088974336t^{14} - 3331784788188069888t^{13} - 3608793463841095680t^{12} - 1726737244250701824t^{11} + 1389752014262501376t^{10} + 3455315070966300672t^{9} + 3275576255906316288t^{8} + 1819816538539032576t^{7} + 611993669578260480t^{6} + 120765959148404736t^{5} + 15674637765574656t^{4} + 1899956092796928t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 11430x + 21304296$, with conductor $630$ | ||||||||||||
Generic density of odd order reductions | $271/2688$ |