Curve name | $X_{208d}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 10 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{208}$ | ||||||||||||
Curves that $X_{208d}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{208d}$ | |||||||||||||
Curves that minimally cover $X_{208d}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{24} - 54t^{20} + 54t^{12} - 54t^{4} - 27\] \[B(t) = 54t^{36} + 162t^{32} + 81t^{28} - 189t^{24} - 324t^{20} - 324t^{16} - 189t^{12} + 81t^{8} + 162t^{4} + 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - 393046x + 94807076$, with conductor $8670$ | ||||||||||||
Generic density of odd order reductions | $271/2688$ |