Curve name | $X_{208}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 14 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{96}$ | ||||||||||||
Curves that $X_{208}$ minimally covers | $X_{96}$, $X_{121}$, $X_{122}$ | ||||||||||||
Curves that minimally cover $X_{208}$ | $X_{468}$, $X_{475}$, $X_{482}$, $X_{486}$, $X_{208a}$, $X_{208b}$, $X_{208c}$, $X_{208d}$, $X_{208e}$, $X_{208f}$, $X_{208g}$, $X_{208h}$, $X_{208i}$, $X_{208j}$, $X_{208k}$, $X_{208l}$ | ||||||||||||
Curves that minimally cover $X_{208}$ and have infinitely many rational points. | $X_{208a}$, $X_{208b}$, $X_{208c}$, $X_{208d}$, $X_{208e}$, $X_{208f}$, $X_{208g}$, $X_{208h}$, $X_{208i}$, $X_{208j}$, $X_{208k}$, $X_{208l}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{208}) = \mathbb{Q}(f_{208}), f_{96} = f_{208}^{2}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 12240x - 518144$, with conductor $1530$ | ||||||||||||
Generic density of odd order reductions | $25/224$ |