| Curve name | $X_{208}$ | 
| Index | $48$ | 
| Level | $16$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | Yes | 
| Generating matrices | $
\left[ \begin{matrix} 3 & 0 \\ 8 & 7 \end{matrix}\right],
\left[ \begin{matrix} 7 & 14 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{96}$ | 
| Curves that $X_{208}$ minimally covers | $X_{96}$, $X_{121}$, $X_{122}$ | 
| Curves that minimally cover $X_{208}$ | $X_{468}$, $X_{475}$, $X_{482}$, $X_{486}$, $X_{208a}$, $X_{208b}$, $X_{208c}$, $X_{208d}$, $X_{208e}$, $X_{208f}$, $X_{208g}$, $X_{208h}$, $X_{208i}$, $X_{208j}$, $X_{208k}$, $X_{208l}$ | 
| Curves that minimally cover $X_{208}$ and have infinitely many rational 
points. | $X_{208a}$, $X_{208b}$, $X_{208c}$, $X_{208d}$, $X_{208e}$, $X_{208f}$, $X_{208g}$, $X_{208h}$, $X_{208i}$, $X_{208j}$, $X_{208k}$, $X_{208l}$ | 
| Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{208}) = \mathbb{Q}(f_{208}), f_{96} = 
f_{208}^{2}\] | 
| Info about rational points | None | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 12240x - 518144$, with conductor $1530$ | 
| Generic density of odd order reductions | $25/224$ |