Curve name | $X_{211e}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 11 & 11 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{211}$ | ||||||||||||
Curves that $X_{211e}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{211e}$ | |||||||||||||
Curves that minimally cover $X_{211e}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{26} - 13176t^{25} - 336528t^{24} - 3156192t^{23} - 14820192t^{22} - 40445568t^{21} - 70108416t^{20} - 52627968t^{19} + 256690944t^{18} + 1055379456t^{17} + 1179574272t^{16} + 3269541888t^{15} - 852443136t^{14} - 13078167552t^{13} + 18873188352t^{12} - 67544285184t^{11} + 65712881664t^{10} + 53891039232t^{9} - 287164071936t^{8} + 662660186112t^{7} - 971256102912t^{6} + 827376795648t^{5} - 352875184128t^{4} + 55264149504t^{3} - 452984832t^{2}\] \[B(t) = 54t^{39} - 53784t^{38} - 4245696t^{37} - 96478560t^{36} - 1103950944t^{35} - 7493160960t^{34} - 32902281216t^{33} - 100522156032t^{32} - 213527218176t^{31} - 203956641792t^{30} + 503988977664t^{29} + 2862236860416t^{28} + 8028100657152t^{27} + 11948819742720t^{26} + 5601483030528t^{25} - 14085563351040t^{24} - 109256607793152t^{23} - 129670503727104t^{22} - 518682014908416t^{20} + 1748105724690432t^{19} - 901476054466560t^{18} - 1433979655815168t^{17} + 12235591416545280t^{16} - 32883100291694592t^{15} + 46894888721055744t^{14} - 33029421640187904t^{13} - 53466009905922048t^{12} + 223899516326117376t^{11} - 421620481133641728t^{10} + 552008678853574656t^{9} - 502857519794749440t^{8} + 296339575054270464t^{7} - 103593064991293440t^{6} + 18235125468758016t^{5} - 924002084192256t^{4} - 3710851743744t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 - 2982500x - 2028731250$, with conductor $1050$ | ||||||||||||
Generic density of odd order reductions | $1091/10752$ |