Curve name | $X_{85}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{36}$ | |||||||||
Curves that $X_{85}$ minimally covers | $X_{36}$ | |||||||||
Curves that minimally cover $X_{85}$ | $X_{192}$, $X_{199}$, $X_{202}$, $X_{205}$, $X_{211}$, $X_{219}$, $X_{225}$, $X_{236}$, $X_{335}$, $X_{339}$, $X_{341}$, $X_{344}$, $X_{85a}$, $X_{85b}$, $X_{85c}$, $X_{85d}$, $X_{85e}$, $X_{85f}$, $X_{85g}$, $X_{85h}$, $X_{85i}$, $X_{85j}$, $X_{85k}$, $X_{85l}$, $X_{85m}$, $X_{85n}$, $X_{85o}$, $X_{85p}$ | |||||||||
Curves that minimally cover $X_{85}$ and have infinitely many rational points. | $X_{192}$, $X_{199}$, $X_{202}$, $X_{205}$, $X_{211}$, $X_{219}$, $X_{225}$, $X_{236}$, $X_{85a}$, $X_{85b}$, $X_{85c}$, $X_{85d}$, $X_{85e}$, $X_{85f}$, $X_{85g}$, $X_{85h}$, $X_{85i}$, $X_{85j}$, $X_{85k}$, $X_{85l}$, $X_{85m}$, $X_{85n}$, $X_{85o}$, $X_{85p}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{85}) = \mathbb{Q}(f_{85}), f_{36} = \frac{8}{f_{85}^{2} - 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 - 850x - 27125$, with conductor $525$ | |||||||||
Generic density of odd order reductions | $19/168$ |