Curve name | $X_{211h}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 9 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 24 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 11 & 11 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 15 & 0 \\ 24 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{211}$ | |||||||||||||||
Curves that $X_{211h}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{211h}$ | ||||||||||||||||
Curves that minimally cover $X_{211h}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{24} - 12960t^{23} - 231120t^{22} - 466560t^{21} + 9164448t^{20} + 45826560t^{19} - 41105664t^{18} - 699217920t^{17} - 1232319744t^{16} + 550748160t^{15} + 2500485120t^{14} + 16429547520t^{13} + 20020248576t^{12} - 65718190080t^{11} + 40007761920t^{10} - 35247882240t^{9} - 315473854464t^{8} + 715999150080t^{7} - 168368799744t^{6} - 750822359040t^{5} + 600601264128t^{4} + 122305904640t^{3} - 242346885120t^{2} + 54358179840t - 452984832\] \[B(t) = 54t^{36} - 54432t^{35} - 3598992t^{34} - 46811520t^{33} - 57596832t^{32} + 2717245440t^{31} + 15671715840t^{30} - 26419986432t^{29} - 438825682944t^{28} - 826544259072t^{27} + 2812400123904t^{26} + 14923836555264t^{25} + 23764009844736t^{24} - 26140848685056t^{23} - 169008626663424t^{22} - 239876532338688t^{21} - 386628053630976t^{20} + 586521023348736t^{19} + 4788538841235456t^{18} - 2346084093394944t^{17} - 6186048858095616t^{16} + 15352098069676032t^{15} - 43266208425836544t^{14} + 26768229053497344t^{13} + 97337384324038656t^{12} - 244512138121445376t^{11} + 184313454520172544t^{10} + 216673618250170368t^{9} - 460142079318687744t^{8} + 110813454771683328t^{7} + 262927761738301440t^{6} - 182351254687580160t^{5} - 15461031862075392t^{4} + 50263486869012480t^{3} - 15457552938565632t^{2} + 935134639423488t + 3710851743744\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + x^2 - 94119201x + 351412332249$, with conductor $1470$ | |||||||||||||||
Generic density of odd order reductions | $11/112$ |