Curve name | $X_{211i}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 24 & 7 \end{matrix}\right], \left[ \begin{matrix} 9 & 0 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 11 & 11 \\ 8 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{211}$ | |||||||||||||||
Curves that $X_{211i}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{211i}$ | ||||||||||||||||
Curves that minimally cover $X_{211i}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{26} - 50976t^{25} - 516672t^{24} + 2256768t^{23} + 13709952t^{22} + 24095232t^{21} - 107910144t^{20} - 287152128t^{19} - 1945949184t^{18} - 3212918784t^{17} + 1745584128t^{16} - 7345078272t^{15} + 54345793536t^{14} + 29380313088t^{13} + 27929346048t^{12} + 205626802176t^{11} - 498162991104t^{10} + 294043779072t^{9} - 441999949824t^{8} - 394776281088t^{7} + 898495414272t^{6} - 591598190592t^{5} - 541769859072t^{4} + 213808840704t^{3} - 1811939328t^{2}\] \[B(t) = 432t^{39} - 440640t^{38} - 23514624t^{37} - 81665280t^{36} + 1006214400t^{35} + 7272529920t^{34} - 10946396160t^{33} - 74036477952t^{32} - 355781984256t^{31} - 695981113344t^{30} + 2242933161984t^{29} + 9949394239488t^{28} + 39489455259648t^{27} + 95714222800896t^{26} - 33410915500032t^{25} + 55437189709824t^{24} - 1232376548032512t^{23} - 2171796140851200t^{22} - 8687184563404800t^{20} + 19718024768520192t^{19} + 3547980141428736t^{18} + 8553194368008192t^{17} + 98011364148117504t^{16} - 161748808743518208t^{15} + 163010875219771392t^{14} - 146992867703783424t^{13} - 182447272976449536t^{12} + 373064449923219456t^{11} - 310531495619985408t^{10} + 183650052797890560t^{9} + 488051221337210880t^{8} - 270103621297766400t^{7} - 87687426704670720t^{6} + 100994541057736704t^{5} - 7570137557237760t^{4} - 29686813949952t^{3}\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 6914880075x - 221322257999750$, with conductor $25200$ | |||||||||||||||
Generic density of odd order reductions | $139/1344$ |