Curve name | $X_{211n}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 9 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 24 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 15 & 0 \\ 24 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{211}$ | |||||||||||||||
Curves that $X_{211n}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{211n}$ | ||||||||||||||||
Curves that minimally cover $X_{211n}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{30} - 12960t^{29} - 230904t^{28} - 362880t^{27} + 11012976t^{26} + 49351680t^{25} - 118119168t^{24} - 1073295360t^{23} - 756843264t^{22} + 6877716480t^{21} + 11701352448t^{20} + 836075520t^{19} - 19700748288t^{18} - 188342599680t^{17} - 80146464768t^{16} + 753370398720t^{15} - 315211972608t^{14} - 53508833280t^{13} + 2995546226688t^{12} - 7042781675520t^{11} - 3100030009344t^{10} + 17584871178240t^{9} - 7741057794048t^{8} - 12937246801920t^{7} + 11547942322176t^{6} + 1522029035520t^{5} - 3873926283264t^{4} + 869730877440t^{3} - 7247757312t^{2}\] \[B(t) = 54t^{45} - 54432t^{44} - 3599640t^{43} - 46158336t^{42} - 14406336t^{41} + 3276370944t^{40} + 16190122752t^{39} - 61270401024t^{38} - 629420585472t^{37} - 376080703488t^{36} + 8834236876800t^{35} + 23400304607232t^{34} - 32051414237184t^{33} - 243210132652032t^{32} - 291096695144448t^{31} + 843056639115264t^{30} + 2602154330947584t^{29} + 1255153134993408t^{28} - 205235225100288t^{27} - 19225395609993216t^{26} - 71390109420748800t^{25} + 87010214380830720t^{24} + 285560437682995200t^{23} - 307606329759891456t^{22} + 13135054406418432t^{21} + 321319202558312448t^{20} - 2664606034890326016t^{19} + 3453159993816121344t^{18} + 4769328253246636032t^{17} - 15939019253483569152t^{16} + 8402085933792362496t^{15} + 24536997803832901632t^{14} - 37053475069309747200t^{13} - 6309587195850129408t^{12} + 42239700469240823808t^{11} - 16447148038180306944t^{10} - 17384011934516379648t^{9} + 14071906054044647424t^{8} + 247498967900749824t^{7} - 3171976696924471296t^{6} + 989461508951900160t^{5} - 59848616923103232t^{4} - 237494511599616t^{3}\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 847072809x - 9488980043537$, with conductor $4410$ | |||||||||||||||
Generic density of odd order reductions | $271/2688$ |