Curve name | $X_{212e}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{212}$ | ||||||||||||
Curves that $X_{212e}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{212e}$ | |||||||||||||
Curves that minimally cover $X_{212e}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -7421703487488t^{24} + 111325552312320t^{22} - 62852551409664t^{20} + 15655155793920t^{18} - 3940968038400t^{16} + 597939978240t^{14} - 92522151936t^{12} + 9342812160t^{10} - 962150400t^{8} + 59719680t^{6} - 3746304t^{4} + 103680t^{2} - 108\] \[B(t) = -7782220156096217088t^{36} - 245139934917030838272t^{34} + 505236324196559093760t^{32} - 245139934917030838272t^{30} + 86957190455129800704t^{28} - 22742474430779228160t^{26} + 5063857976327012352t^{24} - 897729253846548480t^{22} + 144714868589592576t^{20} - 18790361660915712t^{18} + 2261169821712384t^{16} - 219172181114880t^{14} + 19317085175808t^{12} - 1355557109760t^{10} + 80985194496t^{8} - 3567255552t^{6} + 114877440t^{4} - 870912t^{2} - 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 176033x + 53316063$, with conductor $4800$ | ||||||||||||
Generic density of odd order reductions | $271/2688$ |