Curve name | X212 | ||||||||||||
Index | 48 | ||||||||||||
Level | 16 | ||||||||||||
Genus | 0 | ||||||||||||
Does the subgroup contain −I? | Yes | ||||||||||||
Generating matrices | [3303],[7007],[7003],[5003] | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | X86 | ||||||||||||
Curves that X212 minimally covers | X86, X118, X122 | ||||||||||||
Curves that minimally cover X212 | X478, X481, X493, X498, X212a, X212b, X212c, X212d, X212e, X212f, X212g, X212h, X212i, X212j, X212k, X212l | ||||||||||||
Curves that minimally cover X212 and have infinitely many rational points. | X212a, X212b, X212c, X212d, X212e, X212f, X212g, X212h, X212i, X212j, X212k, X212l | ||||||||||||
Model | P1,Q(X212)=Q(f212),f86=f212f2212−18 | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose 2-adic image is the subgroup | y2+xy=x3−5391x+285606, with conductor 735 | ||||||||||||
Generic density of odd order reductions | 25/224 |