Curve name | $X_{212}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{86}$ | ||||||||||||
Curves that $X_{212}$ minimally covers | $X_{86}$, $X_{118}$, $X_{122}$ | ||||||||||||
Curves that minimally cover $X_{212}$ | $X_{478}$, $X_{481}$, $X_{493}$, $X_{498}$, $X_{212a}$, $X_{212b}$, $X_{212c}$, $X_{212d}$, $X_{212e}$, $X_{212f}$, $X_{212g}$, $X_{212h}$, $X_{212i}$, $X_{212j}$, $X_{212k}$, $X_{212l}$ | ||||||||||||
Curves that minimally cover $X_{212}$ and have infinitely many rational points. | $X_{212a}$, $X_{212b}$, $X_{212c}$, $X_{212d}$, $X_{212e}$, $X_{212f}$, $X_{212g}$, $X_{212h}$, $X_{212i}$, $X_{212j}$, $X_{212k}$, $X_{212l}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{212}) = \mathbb{Q}(f_{212}), f_{86} = \frac{f_{212}}{f_{212}^{2} - \frac{1}{8}}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - 5391x + 285606$, with conductor $735$ | ||||||||||||
Generic density of odd order reductions | $25/224$ |