Curve name | $X_{213c}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 24 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 16 & 7 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{213}$ | |||||||||||||||
Curves that $X_{213c}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{213c}$ | ||||||||||||||||
Curves that minimally cover $X_{213c}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{22} - 270t^{20} - 783t^{18} - 648t^{16} + 378t^{14} + 972t^{12} + 378t^{10} - 648t^{8} - 783t^{6} - 270t^{4} - 27t^{2}\] \[B(t) = 54t^{33} + 810t^{31} + 4374t^{29} + 10314t^{27} + 8910t^{25} - 6318t^{23} - 17874t^{21} - 14094t^{19} - 14094t^{17} - 17874t^{15} - 6318t^{13} + 8910t^{11} + 10314t^{9} + 4374t^{7} + 810t^{5} + 54t^{3}\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 7824033x - 8417627937$, with conductor $196800$ | |||||||||||||||
Generic density of odd order reductions | $299/2688$ |