Curve name | $X_{213}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{102}$ | ||||||||||||
Curves that $X_{213}$ minimally covers | $X_{102}$, $X_{118}$, $X_{119}$ | ||||||||||||
Curves that minimally cover $X_{213}$ | $X_{470}$, $X_{472}$, $X_{491}$, $X_{492}$, $X_{213a}$, $X_{213b}$, $X_{213c}$, $X_{213d}$, $X_{213e}$, $X_{213f}$, $X_{213g}$, $X_{213h}$, $X_{213i}$, $X_{213j}$, $X_{213k}$, $X_{213l}$ | ||||||||||||
Curves that minimally cover $X_{213}$ and have infinitely many rational points. | $X_{213a}$, $X_{213b}$, $X_{213c}$, $X_{213d}$, $X_{213e}$, $X_{213f}$, $X_{213g}$, $X_{213h}$, $X_{213i}$, $X_{213j}$, $X_{213k}$, $X_{213l}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{213}) = \mathbb{Q}(f_{213}), f_{102} = f_{213}^{2} + 1\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 1021230x + 397475626$, with conductor $1530$ | ||||||||||||
Generic density of odd order reductions | $25/224$ |