Curve name | $X_{213d}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 24 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 16 & 7 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{213}$ | |||||||||||||||
Curves that $X_{213d}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{213d}$ | ||||||||||||||||
Curves that minimally cover $X_{213d}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{22} - 1080t^{20} - 3132t^{18} - 2592t^{16} + 1512t^{14} + 3888t^{12} + 1512t^{10} - 2592t^{8} - 3132t^{6} - 1080t^{4} - 108t^{2}\] \[B(t) = 432t^{33} + 6480t^{31} + 34992t^{29} + 82512t^{27} + 71280t^{25} - 50544t^{23} - 142992t^{21} - 112752t^{19} - 112752t^{17} - 142992t^{15} - 50544t^{13} + 71280t^{11} + 82512t^{9} + 34992t^{7} + 6480t^{5} + 432t^{3}\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - 122251x + 16425398$, with conductor $6150$ | |||||||||||||||
Generic density of odd order reductions | $73/672$ |