Curve name | $X_{215a}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 14 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{215}$ | ||||||||||||
Curves that $X_{215a}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{215a}$ | |||||||||||||
Curves that minimally cover $X_{215a}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{24} - 864t^{20} + 13824t^{12} - 221184t^{4} - 442368\] \[B(t) = 432t^{36} + 5184t^{32} + 10368t^{28} - 96768t^{24} - 663552t^{20} - 2654208t^{16} - 6193152t^{12} + 10616832t^{8} + 84934656t^{4} + 113246208\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 8033x + 275937$, with conductor $4800$ | ||||||||||||
Generic density of odd order reductions | $109/896$ |