Curve name | $X_{215h}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 14 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{215}$ | ||||||||||||
Curves that $X_{215h}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{215h}$ | |||||||||||||
Curves that minimally cover $X_{215h}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{24} + 216t^{20} - 3456t^{12} + 55296t^{4} - 110592\] \[B(t) = 54t^{36} - 648t^{32} + 1296t^{28} + 12096t^{24} - 82944t^{20} + 331776t^{16} - 774144t^{12} - 1327104t^{8} + 10616832t^{4} - 14155776\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 45x - 104$, with conductor $45$ | ||||||||||||
Generic density of odd order reductions | $299/2688$ |