Curve name | $X_{223b}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{223}$ | ||||||||||||
Curves that $X_{223b}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{223b}$ | |||||||||||||
Curves that minimally cover $X_{223b}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1855425871872t^{24} - 4638564679680t^{22} - 4232690270208t^{20} - 1637993152512t^{18} - 202484219904t^{16} + 15854469120t^{14} + 3878682624t^{12} + 247726080t^{10} - 49434624t^{8} - 6248448t^{6} - 252288t^{4} - 4320t^{2} - 27\] \[B(t) = 972777519512027136t^{36} + 3647915698170101760t^{34} + 5608670385936531456t^{32} + 4499096027743125504t^{30} + 1957904753627234304t^{28} + 413952933718130688t^{26} + 16105096567848960t^{24} - 8371681533886464t^{22} - 1285462236856320t^{20} - 79174500876288t^{18} - 20085347450880t^{16} - 2043867561984t^{14} + 61436067840t^{12} + 24673517568t^{10} + 1823440896t^{8} + 65470464t^{6} + 1275264t^{4} + 12960t^{2} + 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + x^2 - 9832x + 343913$, with conductor $1734$ | ||||||||||||
Generic density of odd order reductions | $299/2688$ |