Curve name | $X_{223}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{102}$ | ||||||||||||
Curves that $X_{223}$ minimally covers | $X_{102}$, $X_{117}$, $X_{121}$ | ||||||||||||
Curves that minimally cover $X_{223}$ | $X_{474}$, $X_{475}$, $X_{223a}$, $X_{223b}$, $X_{223c}$, $X_{223d}$, $X_{223e}$, $X_{223f}$, $X_{223g}$, $X_{223h}$ | ||||||||||||
Curves that minimally cover $X_{223}$ and have infinitely many rational points. | $X_{223a}$, $X_{223b}$, $X_{223c}$, $X_{223d}$, $X_{223e}$, $X_{223f}$, $X_{223g}$, $X_{223h}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{223}) = \mathbb{Q}(f_{223}), f_{102} = 8f_{223}^{2} + 1\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 306x - 1836$, with conductor $306$ | ||||||||||||
Generic density of odd order reductions | $635/5376$ |