Curve name | $X_{223c}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{223}$ | ||||||||||||
Curves that $X_{223c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{223c}$ | |||||||||||||
Curves that minimally cover $X_{223c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1811939328t^{16} - 1811939328t^{14} - 339738624t^{12} + 28311552t^{10} + 4423680t^{8} + 442368t^{6} - 82944t^{4} - 6912t^{2} - 108\] \[B(t) = 29686813949952t^{24} + 44530220924928t^{22} + 19481971654656t^{20} + 1623497637888t^{18} - 413122166784t^{16} - 65229815808t^{14} + 3170893824t^{12} - 1019215872t^{10} - 100859904t^{8} + 6193152t^{6} + 1161216t^{4} + 41472t^{2} + 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 2177x + 36993$, with conductor $3264$ | ||||||||||||
Generic density of odd order reductions | $109/896$ |