| Curve name | $X_{223g}$ | 
| Index | $96$ | 
| Level | $16$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | No | 
| Generating matrices | $
\left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{223}$ | 
| Curves that $X_{223g}$ minimally covers |  | 
| Curves that minimally cover $X_{223g}$ |  | 
| Curves that minimally cover $X_{223g}$ and have infinitely many rational 
points. |  | 
| Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -7421703487488t^{24} - 18554258718720t^{22} - 16930761080832t^{20} - 
6551972610048t^{18} - 809936879616t^{16} + 63417876480t^{14} + 15514730496t^{12}
+ 990904320t^{10} - 197738496t^{8} - 24993792t^{6} - 1009152t^{4} - 17280t^{2} -
108\]
\[B(t) = -7782220156096217088t^{36} - 29183325585360814080t^{34} - 
44869363087492251648t^{32} - 35992768221945004032t^{30} - 
15663238029017874432t^{28} - 3311623469745045504t^{26} - 
128840772542791680t^{24} + 66973452271091712t^{22} + 10283697894850560t^{20} + 
633396007010304t^{18} + 160682779607040t^{16} + 16350940495872t^{14} - 
491488542720t^{12} - 197388140544t^{10} - 14587527168t^{8} - 523763712t^{6} - 
10202112t^{4} - 103680t^{2} - 432\] | 
| Info about rational points | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 629249x - 177971295$, with conductor $55488$ | 
| Generic density of odd order reductions | $109/896$ |