Curve name | $X_{223g}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{223}$ | ||||||||||||
Curves that $X_{223g}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{223g}$ | |||||||||||||
Curves that minimally cover $X_{223g}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -7421703487488t^{24} - 18554258718720t^{22} - 16930761080832t^{20} - 6551972610048t^{18} - 809936879616t^{16} + 63417876480t^{14} + 15514730496t^{12} + 990904320t^{10} - 197738496t^{8} - 24993792t^{6} - 1009152t^{4} - 17280t^{2} - 108\] \[B(t) = -7782220156096217088t^{36} - 29183325585360814080t^{34} - 44869363087492251648t^{32} - 35992768221945004032t^{30} - 15663238029017874432t^{28} - 3311623469745045504t^{26} - 128840772542791680t^{24} + 66973452271091712t^{22} + 10283697894850560t^{20} + 633396007010304t^{18} + 160682779607040t^{16} + 16350940495872t^{14} - 491488542720t^{12} - 197388140544t^{10} - 14587527168t^{8} - 523763712t^{6} - 10202112t^{4} - 103680t^{2} - 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 629249x - 177971295$, with conductor $55488$ | ||||||||||||
Generic density of odd order reductions | $109/896$ |