Curve name | $X_{223h}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{223}$ | ||||||||||||
Curves that $X_{223h}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{223h}$ | |||||||||||||
Curves that minimally cover $X_{223h}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -452984832t^{16} - 452984832t^{14} - 84934656t^{12} + 7077888t^{10} + 1105920t^{8} + 110592t^{6} - 20736t^{4} - 1728t^{2} - 27\] \[B(t) = -3710851743744t^{24} - 5566277615616t^{22} - 2435246456832t^{20} - 202937204736t^{18} + 51640270848t^{16} + 8153726976t^{14} - 396361728t^{12} + 127401984t^{10} + 12607488t^{8} - 774144t^{6} - 145152t^{4} - 5184t^{2} - 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 544x - 4352$, with conductor $816$ | ||||||||||||
Generic density of odd order reductions | $215/2688$ |