Curve name | X223h | ||||||||||||
Index | 96 | ||||||||||||
Level | 16 | ||||||||||||
Genus | 0 | ||||||||||||
Does the subgroup contain −I? | No | ||||||||||||
Generating matrices | [1101],[1087],[5007] | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | X223 | ||||||||||||
Curves that X223h minimally covers | |||||||||||||
Curves that minimally cover X223h | |||||||||||||
Curves that minimally cover X223h and have infinitely many rational points. | |||||||||||||
Model | P1, a universal elliptic curve over an appropriate base is given by y2=x3+A(t)x+B(t), where A(t)=−452984832t16−452984832t14−84934656t12+7077888t10+1105920t8+110592t6−20736t4−1728t2−27 B(t)=−3710851743744t24−5566277615616t22−2435246456832t20−202937204736t18+51640270848t16+8153726976t14−396361728t12+127401984t10+12607488t8−774144t6−145152t4−5184t2−54 | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose 2-adic image is the subgroup | y2=x3−x2−544x−4352, with conductor 816 | ||||||||||||
Generic density of odd order reductions | 215/2688 |